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In the present communication, we describe the construction of a
novel nanosensor. The nanosensor is based on the real-time
determination of swelling (and shrinking) of responsive ultrathin
polymer brushes by an inexpensive, simple, efficient, and highly
sensitive technique: gold nanoparticle enhanced transmission
surface plasmon resonance (T-SPR) spectroscopy. The approach
is illustrated by the observed 50 nm shift (to lower wavelength) of
the T-SPR absorption maximum by the swelling of poly(2-
vinylpyridine) (P2VP) polymer brushes caused by changing the pH
from 5.0 to 2.0. The process was found to be reversible (Figure 1).

Polymer chains anchored by one end to substrates, referred to
as polymer brushéshave been shown to provide an entry to the
fabrication of versatile adaptive surfaces capable of responding to

changes of temperature, solvent polarity, pH, and other stimuli, - 1 Top: Schematics of th ble bH ch induced i
: : : : } igure 1. Top: Schematics of the reversible pH change-induced swelling
generally by reversible swellingRecently, highly responsive pH of gold nanoparticle-coated poly(2-vinylpyridine) (P2VP) polymer brushes.

dependent reversible swelling has been described for polymerggttom: T-SPR spectra of gold nanoislands (containing adsorbed PGMA,
brushes, prepared from weak polyelectrolytes (PEhe charge P2VP polymer brushes, and gold nanoparticles) at pH 2.0 and 5.0.

density of a weak PE brush is a function of the local concentration
of protons. Changes in pH (a decrease or an increase for basic owinylpyridine) (P2VP-COOH, M,, = 39 200 g/molM,, = 41 500
an acidic PE, respectively) generates more charges in the interiorg/mol) film was spin-coated from a 2% solution in chloroform onto
of the polymer brushes, which are then forced by electrostatic the cross-linked PGMA anchoring layer and was annealed, once
repulsions to stretch out and, hence, to swell to a thickness severalagain, fo 8 h in avacuum oven at 140C. The epoxy groups of
times greater than that for the uncharged poly#fer. the PGMA anchoring layer reacted with the end carboxyl groups
T-SPR spectroscopy is based on the exploitation of localized of the polymer, yielding a layer of tethered chains (polymer brushes)
surface plasmon resonanté&ocalized surface plasmons (LSPs) of P2VP8-10 The film was rinsed several times in chloroform and
are charge density oscillations confined to coinage metal nanopar-water (pH 2.0) to remove the ungrafted polymer. The thickness of
ticles and nanoislands. Excitation of LSPs by light at an incident the unswelled (dry) P2VP polymer brush was determined to be
wavelength where resonance occurs results in the appearance 08.9 and 8.1+ 0.7 nm by ellipsomety and SPR technigqug,
intense surface plasmon (SP) absorption bands. The intensity andespectively (see Supporting Information). An AFM scratch test
position of the SP absorption bands are characteristic of the typegave the thickness of 8. 2.0 nm for the brush prepared for
of material (typically, gold, silver, or platinum), the size, size T-SPR. This brush thickness corresponds to the grafting density
distribution, and shape of the nanostructures and are highly sensitivevalue of ~0.12 nnt2 and the distance between grafting points of
to the changes of the surrounding environments. This sensitivity is ~3.0 nm. The mean square root end-to-end distance of the swollen
exploited in T-SPR spectroscopyRecently, we reported that the  P2VP chains is about 10.0 nm {@-solvent and much larger in
T-SPR shift caused by the adsorption of double-stranded DNA onto acidic water, confirming the presence of a true brush regime. In
gold nanoislands is considerably enhanced by attaching 12 nmwater, when the pH was changed from 5.0 to 2.0, the polymer brush
diameter gold nanoparticles onto the complementary single-strandedswelled to a thickness three times the original (from £.0.7 to
DNA used in the hybridizatiof. 24.0 £ 2.0 nm). Finally, citrate ion-stabilized 12.& 1.9 nm
Three different samples of P2VP brushes of almost the same diameter gold nanoparticlesere adsorbed onto the polymer brush
brush thickness were fabricated on the surfaces of three differentfrom their aqueous solution (Figure 1). Depositions of PGMA,
substrates. Gold nanoislands, evaporated on transparent glass slide®2VP, and gold nanoparticle layers were monitored by T-SPR
(nominal thickness of-4 nm and annealed overnight in a vacuum (Figure 2), AFM scratch test, and SPR (see Supporting Information).
oven at 140C), were used as substrates for T-SPR. Highly polished The gold nanoparticles formed a fairly closed-packed uniform
Si wafers were used as substrates for ellipsometry. Thin continuouscoverage on the polymer brushes, as evidenced by AFM (see
gold film deposited on the surface of a glass slide was used as aSupporting Information).
substrate for surface plasmon resonance (SPR) experiments. On The absorption maximum of the T-SPR spectrum of the gold
these substrates, a thin layer of polyglycidyl methacrylate, PGMA nanoislands, in the presence of attached PGMA and P2VP polymer
(2.3+ 0.5 nm thick), was deposited by spin-coating from a 0.01% brushes, was found to shift by 6 nm between pH 5.0 and 2.0 (from
solution in tetrahydrofurane and cross-linked overnight at room 568 to 562 nm, in a typical example; see Figure 3A). This shift is
temperature to form a stable and strongly adhered macromolecularcaused by the protonation of P2V~ 2.3) and the consequent
anchoring layer. Afterward, a carboxyl group-terminated poly(2- increase of the electrostatic repulsions between the positively

Gold nanoparticles

Ay, = 50 nm pH =50

P
S

400 500 600 700 800
Wavelength (&), nm

15950 = J. AM. CHEM. SOC. 2004, 126, 15950—15951 10.1021/ja044575y CCC: $27.50 © 2004 American Chemical Society



COMMUNICATIONS

0.5 504+, =624 nm -0 7 Ei
8 0.4 § a0 , 38
E 0.3 530 gz
0.2 5§20 T
< A 104 A,..=574 nm 3
0.1 o{/ 22
0.04— T r r ] 1. 2 3 4 5 67
400 500 600 700 800 oH

Wavelength, nm ) . . . .
Figure 4. Shift of the absorption maximum of the T-SPR and the thickness

Figure 2. T-SPR spectra of bare Au nanoislands (A), Au nanoislands and of the polymer brush determined by SPR as a function of pH.

PGMA (B), Au nanoislands with PGMA and P2VP (C), and Au nanoislands
with PGMA, P2VP, and Au nanopatrticles (D). All T-SPR spectra were

taken in air. Similar optical measurements were performed in the absence of

the gold island film (on glass slides). We found that the spectrum
A B -~ PH=5.0 of gold nanoparticles deposited on the P2VP layer is composed of
pk=5.0 z ‘{ two peaks: one at 542 nm (representing the separate particles) and
,-_‘j ) AN another around 625 nm (characteristic for aggregated particles).
& - pH#2.0 ‘\‘\ Shrinking and swelling of the thin polymer layer resulted in
H=2.0 Ny, y changing the ratio of these two peaks (Supporting Information).
Obviously, these changes are too complex and less sensitive than
those obtained in the presence of the gold nanoislands.
Demonstration of an extremely straightforward but highly
sensitive nanosensor, based on gold nanoparticle enhanced T-SPR
spectroscopy, is the most significant result reported here. Addition-
ally, to the best of our knowledge, no previous work appeared on
the construction of such an ultrathin reversibly swelling polymer
charged PE, osmotic pressure, and in the swelling of the P2VP brush. Ultrathin reversibly swelling polymer brushes, of course,
polymer brushes (Figure 1). minimize the diffusion of the analyte to the sensor and, hence,
A dramatically enhanced shift of this pH-induced T-SPR shorten the response time.

absorption spectrum was observed if gold nanoparticles were Supporting Information Available: ~Ellipsometry, SPR, AFM, and

adsorbed on the P2VP polymer brush. The abs_orption maximum T-SPR, and stability data. This material is available free of charge via
of the T-SPR spectrum of the gold nanoislands, in the presence ofy, o |nternet at http://pubs.acs.org.
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Figure 3. T-SPR spectra of Au nanoislands with PGMA and P2VP in the

absence (A) and in the presence (B) of adsorbed #1179 nm diameter
citrate-capped gold nanoparticles at pH 2.0 and 5.0.
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